Revisiting Boltzmann learning: parameter estimation in Markov random fields

نویسندگان

  • Lars Kai Hansen
  • Lars Nonboe Andersen
  • Ulrik Kjems
  • Jan Larsen
چکیده

This contribution concerns a generalization of the Boltzmann Machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization and generalization in the context of Boltzmann Machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov Field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Composite Likelihoods in General Random Fields

We propose a simple estimator based on composite likelihoods for parameter learning in random field models. The estimator can be applied to all discrete graphical models such as Markov random fields and conditional random fields, including ones with higher-order energies. It is computationally efficient because it requires only inference over treestructured subgraphs of the original graph, and ...

متن کامل

Learning with Blocks: Composite Likelihood and Contrastive Divergence

Composite likelihood methods provide a wide spectrum of computationally efficient techniques for statistical tasks such as parameter estimation and model selection. In this paper, we present a formal connection between the optimization of composite likelihoods and the well-known contrastive divergence algorithm. In particular, we show that composite likelihoods can be stochastically optimized b...

متن کامل

Deep-structured hidden conditional random fields for phonetic recognition

We extend our earlier work on deep-structured conditional random field (DCRF) and develop deep-structured hidden conditional random field (DHCRF). We investigate the use of this new sequential deep-learning model for phonetic recognition. DHCRF is a hierarchical model in which the final layer is a hidden conditional random field (HCRF) and the intermediate layers are zero-th-order conditional r...

متن کامل

Parallelizable Sampling of Markov Random Fields

Markov Random Fields (MRFs) are an important class of probabilistic models which are used for density estimation, classification, denoising, and for constructing Deep Belief Networks. Every application of an MRF requires addressing its inference problem, which can be done using deterministic inference methods or using stochastic Markov Chain Monte Carlo methods. In this paper we introduce a new...

متن کامل

Learning and Evaluating Boltzmann Machines

We provide a brief overview of the variational framework for obtaining deterministic approximations or upper bounds for the log-partition function. We also review some of the Monte Carlo based methods for estimating partition functions of arbitrary Markov Random Fields. We then develop an annealed importance sampling (AIS) procedure for estimating partition functions of restricted Boltzmann mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996